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Local Dynamic Buckling of C–Shape Profile Subjected to Bending
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This paper deals with local dynamic buckling of thin–walled girder segments (short
beam–columns) subjected to bending. Various shapes of pulse loading (triangle, trape-
zoid and rectangle) with a duration corresponding to the fundamental period of vibration
were taken into account. Assumed boundary conditions correspond to a simple support,
this agrees with conditions that exist in the place of the diaphragm in a long spar. The
problem was solved by finite element method. In order to determine the critical load
pulse amplitudes Volmir, Budiansky–Hutchinson, Ari–Gur and Simonetta criteria were
employed.
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1. Introduction

The phenomenon of stability loss has been known for over 250 years – Leonhard
Euler was the first, who made an attempt to solve the buckling problem of the long
rod. Destruction of such rod is determined by the critical load, above which the
structure is transferred to unstable equilibrium path that leads to failure. In the
recent years, considerable efforts have been put into studying the concept of stability
of plates, shells and constructions (thin–walled beams, beam–columns, cylindrical
or conical shell).

Pioneer works concerning this topic were carried out by Timoshenko [4] and
Volmir [5]. These cases involved statically loaded thin–walled structure. Already in
the 60’s of twentieth century, it was proved that such structures behave differently
when exposed to dynamic loads. First studies on dynamic buckling can be found
in publications performed by Volmir [6] and Budiansky [7], [8].

Thin–walled structures are widely used in building structures such as thin–
walled vessels or storage towers, beam–columns of houses and halls. These types of
structures are also used as components for cars, boats or airplanes.
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Widespread application of thin–walled elements and the strong demand for new
solutions brought about development of theory and experimental researches not
only on stability, post buckling behaviour and load–carrying capacity, but also on
the behaviour of thin–walled structures dynamically loaded. The nature of the
phenomena occurring in the case of the pulse load depends not only on the pulse
duration but also on its amplitude.

The impact takes place when the pulse is characterized by very short duration
and high amplitude. The dynamic load, which is studied in this paper, occurs when
the pulse duration is comparable with the period of fundamental natural vibrations
of the structure and the amplitude reaches medium value. Quasi–static loading
corresponds to pulses with long durations.

The time depending load may be of different shape (sinusoidal, rectangular, tri-
angular, and exponential) and have different characteristics (regular or
irregular) [1]. Various pulse shapes are assumed in such a way to simulate real
load [2], [3].

First publications dealing with the dynamic stability of rods are given in
papers [9], [10]. Stability of thin shells, which have unstable post buckling equilib-
rium path, is discussed in [6], [7], [8], [11], [12], and [13]. Investigations of thin plates
were presented by Volmir [6] Weller, Abramovich and Yaffe’a [14], Abramovich and
Grunwald [15], Ari–Gur and Simonetta [16] or Kubiak [20]. Simitses [17] found
that for plates, which have stable post buckling equilibrium path, it is not precise
to consider dynamic stability loss but rather dynamic response of the load pulse is
more adequate. The dynamic response is described by strengthening the amplitude
of initial geometrical imperfection.

It is well known that equilibrium path for plates with initial geometrical im-
perfection have no bifurcation points, so the critical buckling dynamic charac-
teristic quantity cannot be clearly defined. Therefore, it is necessary to define
the criteria [18] allowing to designate critical amplitude of the pulse load. The most
common criteria are as follows: Volmir criterion [6], Budiansky criterion [7], Ari–
Gur criterion [16] or Petry–Fahlbush one [19]. Works related to dynamic buckling
of thin–walled structures made of thin flat isotropic as well as orthotropic plates
have been published in [21], [22], [23], [24].

All the works mentioned above deal with thin-walled structures subjected to
axial compression or pressure load. Papers dealing with dynamic buckling of the
thin–walled structures subjected to twisting and bending can also be found [21].
However, the above paper deals only with simply supported plate subjected to load
corresponding to cross-section forces which was determined in the wall modelling
the girder subjected to twisting and bending.

In the world of literature there exists deficiency in studies concerning thin–
walled structures loaded in a complex way. Authors of this paper decided to take
into account the thin–walled beams–columns with open cross–section subjected to
bending moment pulse loading (compressed web, plate bended flanges).
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2. Formulation of the problem

In order to understand the phenomena occurring in girders with open cross–section
subjected to bending moment pulse loading numerical analysis was performed and
used as a cognitive tool. The local dynamic buckling phenomenon was of major
concern – this was a reason that only short segments of lengths corresponding to
the formation of a single half-wave sine wave at static loads were considered.

The numerical survey was conducted to evaluate the influence of pulse shape,
mode and amplitude of initial imperfections on the dynamic response of channel
sections subjected to bending. With the aim of determining the critical load pulse
amplitude one of the three well–known criteria of stability were used (Volmir [6],
Budiansky–Hutchinson [8], Ari–Gur and Simonetta [16]). The choice of criteria for
a particular case depended on obtained results. The Volmir criterion [6] assumes
that the stability loss of the plates occurs when the maximum deflection is equal to
a fixed value. Major assumptions consider critical values of displacement are equal
to thickness or half thickness of the plate (in this paper one thickness was assumed).

The Budiansky–Hutchinson [8] criterion states that the dynamic stability loss
occurs when the maximum deflection grows rapidly with the small variation of the
load amplitude. One of the Ari–Gur - Simonetta [16] criterion says that the dynamic
buckling occurs when a small increase in the pulse intensity causes a decrease in
the peak lateral deflection. Similarly to the other works that deal with dynamic
buckling the dynamic load factor DLF defined as the ratio of the pulse amplitude
to the static buckling load was introduced.

The critical dynamic load factor (DLF cr), at which the dynamic buckling occurs
was determined using criteria mentioned above. The numerical calculations were
performed for exemplary thin–walled girder with C–shape cross–section (Fig.1) with
the following dimension: b1 = 50 mm, b2 = 25 mm, h = 0.5 mm, length of the
column l = 50 mm. The material properties were assumed to be the same as for
steel: E = 2 · 105 MPa, υ = 0.3. The problem was solved in the elastic range.

The scheme of the load is presented in Fig. 2. vector of the bending moment is
located in the plane perpendicular to the plane of symmetry of the web.

Figure 1 The loading scheme
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Figure 2 The loading scheme

Figure 3 Triangle shapes of pulse loading: a) T1, b) T2, c) T3

Figure 4 Transition from a rectangular to triangular T1 pulse shape

Figure 5 Transition from a rectangular to triangular T3 pulse shape



Local Dynamic Buckling of C–Shape ... 137

In order to investigate the influence of the shape of pulse loading on dynamic
response the following pulse shapes were taken into account: rectangular (Fig. 4a),
three triangular (Fig. 3 – two right triangles denotes as T1 and T3 and isosceles
triangle denoted as T2) and three trapezoids (Fig.4b–d and Fig.5b–d) with the
length of the upper base representing 20%, 50% and 80% of the length of the lower
base. Pulse shapes and applied indication is given in Figs 3 to 5. It was assumed
that the pulse duration is equal to the period of natural vibrations of girder under
consideration. The adoption of such pulse shapes measure the effect of load increase
(transition from a rectangular pulse through a trapezoidal to triangular T1 – Fig. 4)
or decrease (transition from a rectangular pulse through a trapezoidal to triangular
T3 – Fig. 5) on the dynamic response of girder under consideration. It should be
noted that areas under pulse shape curves in Fig. 4 and Fig. 5 are different, because
of their shape, duration as well as amplitude in all cases is unchangeable.

3. Numerical model

The problem was solved using finite element method, employing commercial soft-
ware ANSYS. At the first step the eigenvalue problem was solved to find the fre-
quencies of natural vibration with corresponding modal mode and to find critical
load with corresponding buckling mode. The pulse duration Tp was set based on
period of natural vibration. The critical load – in this case the critical moment
Mcr was used to determine the dynamic load factor DLF. The buckling or modal
mode was used to set the initial imperfection with the amplitude corresponding to
the thickness of the considered girder wall. The dimensionless amplitude of initial
imperfection was assumed as ξ∗ = 0; 0.01 wmax/h; 0.1 wmax/h. The amplitude of
initial imperfection set to zero (ξ∗ = 0) means that ideal structures with flat wall
were taken into consideration. The results of these calculations were used as input
to the analysis of the dynamic behaviour of the structure in time, during and imme-
diately after exposure of pulsed loads. In the analysis of the dynamic response the
equilibrium equation is supplemented by the dynamic blocks, and takes the form:

{P} = [M ] · {..
u}+ [C] · { .

u}+ [K] · {u} (1)

where {P} is the vector of nodal forces, [M] is the mass matrix, [C] is a damping
matrix and {u} is the vector of nodal displacements.

As it has been shown in many studies (for example [25]) for the short–term load
the damping effect can be neglected what leads to the simplification of equation (1)
to the form:

{P} = [M ] · {..
u}+ [K] · {u}. (2)

After replacing the time derivatives of displacements {ü} by differences displacement
{u} in successive discrete moments of time t, the new static equilibrium equation
taking into account the inertia forces [M] {ü} is obtained for the each time step and
therefore it is possible to apply the algorithms used in the analysis of static. Time
integration in the ANSYS program is done using the Newmark method and solution
of equations in successive time steps is made by Newton–Raphson algorithm. This
approach allows analysing the behaviour of the structure subjected to pulse loading.
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Figure 6 Quadrilateral, four node shell element

Discretization of channel section beam–columns was performed with the quadri-
lateral; four nodes shell elements (Fig. 6) with six degrees of freedom (three orthog-
onal displacements and three rotations around the axis in the plane of the element)
at each node.

The way of discretization (number and size of elements) was selected on the
basis of experience in such a way as to ensure the freedom of the tracking distortion
during deformation, that is, during the pulse and after its termination. By default
at least 5 elements along one half-wave of sinusoid, occurring during buckling, are
assumed. Accepted model for discrete channel section is shown in Fig. 7.

Figure 7 Finite element model of considered channel section girder
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For considered girder the boundary conditions corresponding to simple supports
are set only at loaded edges.

It was assumed that the bending occurs about an axis, for which the second
moment of area is the smallest, and therefore FEM model is prepared in this way
that on the neutral axis of bending in the ending sections were nodes in which the
displacement in the x direction was set to zero (Fig. 8). Rectilinearity of the loaded
edges is provided by requiring the permanent displacements of all nodes lying on
the edge of the girder in the direction normal to the wall of the girder (Fig. 8). To
ensure that deformations are compatible with the deflection in bending the edges
normal to the neutral axis remained straight in the plane containing the wall of the
column, in addition, for all nodes lying on that edges the constant rotation around
the axis parallel to the axis of the neutral section was presupposed.

Figure 8 Assumed boundary condition

4. Results of numerical calculation

All presented results were obtained using ANSYS software based on finite element
method. From linear analysis the critical moment with corresponding buckling
mode and modal mode with corresponding natural frequency was obtained. The
calculation results are presented in Figs. 9 and 10. The lowest critical moment is
equal to Mcr = 27.9 Nm.

The more similar (maximum deflection on web) modal mode to the lowest buck-
ling mode (Fig. 9) is the third modal mode (Fig. 10c), for which natural frequency
is equal f3 = 1277 Hz. Taking the modes similarity into account the period of pulse
duration was calculated from period of natural vibration for the third modal mode.
For all employed pulses the duration was set to Tp= 0.783 ms. The results presented
below were obtained with assumption for amplitude of initial imperfection set to
1/100 wall thickness (ξ∗ = wmax/h = 0.01, where wmax – maximum deflection, h –
thickness of the girders wall).
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Figure 9 Buckling mode: Mcr1 = 27.9 Nm

Figure 10 Modal mode: a) f1 = 841 Hz; b) f2 = 931 Hz; c) f3 = 1277 Hz
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Figure 11 Dimensionless displacement ξ vs. DLF for rectangular pulse loading

Figure 12 Buckling mode for different dynamic load factor: a) DLF=2.1; b) DLF=2.4

In Fig. 13 the influence of type of the load decrease is presented – the graphs
present dynamic responses for three different pulse types: R – rectangular, 0.5T3 –
trapezoidal and T3 – triangular (see Fig. 5). All mentioned pulses have the same
period of duration and amplitude.

It was difficult to obtain value of critical load for T3 pulse based on Budiansky-
Hutchinson criterion, because there are two large increases of deflection for DLF=2.7
and DLF=2.9. A critical value DLF cr=2.9 was taken accordingly to Budiansky–
Hutchinson criterion which says that the dynamic stability loss occurs when the
maximum deflection grows rapidly with the small variation of the load amplitude.
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Figure 13 Dimensionless displacement ξ vs. DLF for rectangular R, trapezoidal 0.5T3 and
triangular T3 pulse loading

Table 1 Critical value of dynamic load factor for different pulse loading

Pulse type Dimensionless
area under
pulse loading
curve
Tp=const.;
Nx0=const.

DLFcr for
Volmir crite-
rion

DLFcr for
Budiansky–
Hutchinson
criterion

DLFcr for
Ari–Gur
and
Simonetta
criterion

R 1 1 1.3 2
0.8T3 0.9 1.1 1.7 2.5
0.5T3 0.75 1.2 1.9 2.6
0.2T3 0.6 1.5 2.7 3
T3 0.5 1.7 2.9 4

In Fig. 14 the influence of load increase in assumed pulses is presented. The
relation between dynamic responses is similar to this presented in Fig. 13. It could
be said that the critical dynamic load factor as well as dynamic responses (curves
in Figs 13 and 14) do not strictly depend on load increase or decrease during the
pulse (compare with Fig. 15). The differences in DLF cr appears because all applied
pulses have different areas under pulse loading curve – the higher area the smaller
DLF cr obtained for considered criterion (Tabs 1 and 2).

In order to present a better comparison of the influence of the shape of pulse
loading on critical dynamic load factor, the three triangular pulse shapes (T1, T2
and T3 – Fig. 3) are considered.

All these pulses have the same area under pulse loading curve but different way
of the load increase and decrease. The results are presented in Fig. 15 – it can be
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Figure 14 Dimensionless displacement ξ vs. DLF for rectangular, trapezoidal 0.5T1 and trian-
gular T1 pulse loading (see Fig. 4)

Table 2 Critical value of dynamic load factor DLFcr for different pulse loading

Pulse type Dimensionless
area under
pulse loading
curve
Tp=const.
Nx0=const.

DLFcr for
Volmir crite-
rion

DLFcr for
Budiansky–
Hutchinson
criterion

R 1 1 1.3
0.8T1 0.9 1.1 2.1
0.5T1 0.75 1.3 2.3
0.2T1 0.6 1.7 2.7
T1 0.5 2.1 3.1

said that the slope of the load increasing or decreasing have not significant influ-
ence on critical dynamic load factor (see Table 3). The influence of pulse dura-
tion on dynamic responses has been analyzed. Different pulse duration Tp was
analysed (Fig. 16) it can be noted that when duration Tp is extending critical
value of dynamic load DLF cr is decreasing. The pulse duration longer than period
of natural vibration means that it is almost quasi-static load and curve ξ(DLF)
lies closer to static post buckling equilibrium path (see curve denoted by 1.5Tp
in Fig. 16) and also the DLF cr leads to unity. The case denoted by 1.5Tp cor-
responds to case which pulse duration is equal to period of fundamental natural
vibration (f1 – Fig. 10.)
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Figure 15 Dimensionless displacement ξ vs. DLF for different triangular pulse loading

Table 3 Critical value of dynamic load factor DLFcr for different triangular pulse loading

Pulse type Volmir criterion Budiansky–
Hutchinson
criterion

T1 2.1 3.1
T2 1.9 2.9
T3 1.7 2.9

Based on Fig. 17 it can be noted that amplitude of initial deflection has a
significant influence on value of DLF cr, greater value of initial deflection have effect
of lowering critical value of dynamic load factor. The same dependence appears for
static load as well as dynamic pulse compression load [22].

There have not been any difficulties in finding the corresponding modal mode
and buckling mode in case of compression load, on the contrary when structure is
subjected to bending the local buckling mode and the modal mode are different
(Figs 9 and 10). That was the reason to investigate the influence of shape of initial
imperfection on critical dynamic load factor. The amplitude of initial imperfection
have been set to 1/100 wall thickness and the three shapes have been taken into
account – shape corresponding to third modal mode (Fig. 10c), first and second
buckling mode (Fig. 9). Obtained results are presented in Fig. 18 and Tab. 6. It
can be said that the shape of initial imperfection for assumed amplitude have not
any influence on dynamic load factor – all curves presented in Fig. 18 lie very close
one another.
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Figure 16 Influence of pulse duration Tp on function ξ vs. DLF for triangular T3 pulse loading

Table 4 Critical value of dynamic load factor DLFcr for different pulse duration

Pulse duration Volmir criterion Budiansky-
Hutchinson
criterion

0.5Tp 3.2 3.9
0.75Tp 2.2 3.5
Tp 1.7 2.9
1.5Tp 1.4 2.1
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Figure 17 Influence of amplitude of initial imperfection on ξ vs. DLF relation for triangular T3
pulse loading
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Table 5 Critical value of DLF for different amplitudes of initial imperfection

Amplitude of
initial imper-
fection

Volmir criterion Budiansky-
Hutchinson
criterion

0.1h 1.3 2.5
0.01h 1.7 2.9
0h 1.8 3.1
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Figure 18 The initial imperfection shape influence on function ξ vs. DLF for triangular T3 pulse
loading

Table 6 Critical value of dynamic load factor DLFcr for different shape of initial imperfection

Shape of initial
imperfection

Volmir criterion Budiansky-
Hutchinson
criterion

1st modal mode 1.8 2.9
3rd modal mode 1.7 2.9
1st buckling mode 1.7 2.9
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5. Conclusions

Analyzing the results of calculation for dynamic response for C–shape cross–section
girders subjected to bending pulse load and comparing obtained critical dynamic
load factors using well–known criteria, it can be stated that:

• the mode of initial imperfection for relatively small amplitude has no signifi-
cant impact on critical dynamic load factor,

• the value of amplitude of initial imperfection changes the critical dynamic
load factor – the higher amplitude the smaller critical dynamic load factor,

• the slope of increasing or decreasing load during pulse loading has very small
influence on critical dynamic load factor, the significant effect appears when
the area under pulse loading curve is changing – the higher area the smaller
DLF cr,

• longer pulse duration leads to results similar to one obtained when the struc-
tures are subjected to static load – for longer pulse duration the critical dy-
namic load factor tends to unity.

The above conclusions are similar to results obtained for structures subjected to
compressive pulse loading.
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